
M. Attene JMeshLib

Istituto di Matematica Applicata e Tecnologie Informatiche

Consiglio Nazionale delle Ricerche
Genova - ITALY

JMeshLib
Version 1.0

A C++ API to manage manifold triangle
meshes

MARCO ATTENE

QUICK INTRODUCTION

1

M. Attene JMeshLib

Index
1. Hello JMeshLib..3
2. Manifold triangle meshes...4
3. A data structure for manifold triangle meshes ...4

3.1 Scheme of the relationships ...5
3.2 A non-redundant data structure..6

4. Loading polygon meshes ...7
Bibliography...8

2

M. Attene JMeshLib

1. Hello JMeshLib

This piece of code is an example of use of the API.

1) #include "jmesh.h"
2)
3) int main(int argc, char *argv[])
4) {
5) JMesh::init();
6) Triangulation tin;
7)
8) if (argc < 3)
9) JMesh::error("\nUsage: %s infile.wrl outfile.wrl\n",argv[0]);
10)
11) if (tin.load(argv[1]) != 0) JMesh::error("Can't open file.\n");
12) tin.saveVRML1(argv[2]);
13)
14) return 0;
15) }

Code Walk-through
Line 1: Include all JmeshLib’s class definitions, static vars, constants, and so on. Always needed.

Line 5: Init JMeshLib's internal state machine. Always needed.

Line 6: Create an instance of a triangle mesh. Initially empty.

Line 9: Example of use of JMeshLib’s internal error reporting system.

Line 11: The method “load” of the class Triangulation is a wrapper that calls the proper loader
depending on the format of the file. See section 4.

Line 12: The method “saveVRML1” writes the triangle mesh to a VRML 1.0 ascii file.

3

M. Attene JMeshLib

2. Manifold triangle meshes
In JMeshLib, particular care has been taken in maintaining a neat separation between connectivity
and geometry. For this reason we make use of some notation adapted from [3], and denote a
triangle mesh as a pair (P,K), where P is a set of N point positions pi = (xi,yi, zi) œ R3 with 1 § i §
N, and K is an abstract simplicial complex which contains all the topological information. The
complex K is a set of subsets of {1, ..., N}. These subsets are called simplices and come in 3 types:
vertices v = {i}, edges e ={i,j}, and triangles t ={i,j,k}, so that any non-empty subset of a simplex of
K is again a simplex of K, e.g., if a triangle is present so are its edges and vertices.
The abstract simplicial complex K describes a topology [4], or connectivity, on P. We refer to P as
to the geometry of the triangle mesh M=(P, K), while we call connectivity, or topology, of M the
connectivity defined on P through K. We say that M is combinatorially manifold iff K is a
combinatorial manifold [5]. In its turn, K is a combinatorial manifold iff all its vertices are
manifold, and a vertex of K is manifold if its neighborhood is homeomorphic to a disk in the
topology of K.
A simplex σ of cardinality k+1 is also called a k-simplex. For each k-simplex σ we define a function
j:

[] Ν→Ν⊂k,0:ϕ s.t. .
[]
U

ki

i
,0

)(
∈

= ϕσ

Now, for each k-simplex σ in K, let us consider the subset of R3 formed by the points x that can be
expressed as the convex combination of the vertex positions of σ:

∑
=

=
k

i
ii plx

0
)(ϕ , with 0,1

0
≥=∑

=
i

k

i
i ll

We refer to the union of all such subsets as to the geometric realization S Õ R3 of the triangle mesh
M=(P,K). Thus, the geometric realization is a set of points of R3 for which an Euclidean topology
exists, and we say that S is manifold iff the neighborhood of each point in S is homeomorphic to a
disk. Throughout the reminder of this paper we say that M is geometrically manifold, or manifold in
the Euclidean sense, if S is manifold with respect to the Euclidean topology.
Note that a triangle mesh may be manifold in the combinatorial sense and not in the Euclidean one,
for example when the mesh self-intersects. Also, a geometrically manifold mesh may be not
combinatorially manifold. To obtain such a model, for example, start from a triangle mesh which is
both combinatorially and geometrically manifold, pick an edge e ={i,j}, add a new triangle t ={i,j,k}
and set pk=pj.
If we relax the requirement of homeomorphism with a disk to the weaker condition of
homeomorphism with a disk or with a half-disk, we say that M is manifold with boundary, which
holds both in the Euclidean and in the combinatorial sense.
We define an orientation of an edge as an ordering of its two vertices. Furthermore, we call an
orientation of a triangle an equivalence class of ordering of its vertices where (v1,v2,v3) ∼
(vψ(1),vψ(2),vψ(3)) are equivalent orderings if the parity of the permutation ψ is even. Two triangles
sharing an edge e are consistently oriented if they induce different orientations on e. A triangle
mesh is orientable iff all its triangles can be oriented consistently.

3. A data structure for manifold triangle meshes
The definition of a data structure for boundary representations, such as triangle meshes, requires the
coding of topological entities (with the associated geometric information) and of a suitable subset of
the topological relationships between such entities. In particular, it is desirable that all of the
following requirements are satisfied:

• The structure must be complete, that is, it must be possible to extract all of the entities and
relationships which are not explicitly stored, without ambiguity.

4

M. Attene JMeshLib

• The structure should be non-redundant, that is, if an entity (or a relationship) can be computed
in optimal time, then it should not be explicitly coded in the data structure.

• Each relationship which is not explicitly stored must be computable in optimal time, that is,
the number of operations required must be linear in the number of elements of the relationship.

3.1 Scheme of the relationships

A topological relation is essentially a function which associates to each element σ of a given type (a
vertex, an edge or a triangle) the set of all the elements of another given type having a topological
connection with σ. For example, if V is the set of vertices of a triangle mesh M = (V,E,T), then the
set of pairs VE = {(v, Υ) | v ∈ V, Υ ⊆ E and ∀ ϕ ∈ Υ, v ⊂ ϕ} is the topological relationship which
relates each vertex with the set of all the edges incident at it. Clearly, the set of pairs VE may be
viewed as a function VE: V →℘(E) which maps each element of V into a subset of E.

Let M = (V,E,T) be a manifold triangle mesh. The following Figure 1 depicts all of the possible
relationships between elements of M. Notice that a good data structure should not store them all in
order to avoid redundancy.

E

V T

Figure 1: A scheme of all of the possible relationships between topological entities in a triangle mesh.

Let v be a vertex. VV(v) is the set of all the vertices which are connected to v through an edge1.
VE(v) is the set of all the edges which are incident at v. VT(v) is the set of all the triangles of which
v is a vertex.

Let e be an edge. EV(e) is the set containing the two ending vertices of e. ET(e) is the set of the
triangles of which e is an edge. Notice that, since we consider only manifold triangle meshes
(possibly with boundary), each set ET(e) contains either two elements (when e is an internal edge)
or one element (when e is a border edge). The set EE(e) is the set of the edges bounding the
triangles of which e is an edge, excluding e itself. Thus, if e is an internal edge, the set EE(e)
contains four edges, while if e is on the boundary, |EE(e)| = 2.

Let t be a triangle. The set TV(t) is the set of the three vertices of t. TE(t) is the set of the three
edges bounding t and, finally, TT(t) is the set of the triangles sharing an edge with t.

Moreover, a topological relation may map each element of its domain into a set of constant or
variable cardinality. Hence, when dealing with closed triangle meshes, one can classify the
relationships in:
A. Constant relations. These relations map edges and triangles into sets of neighboring elements

with constant cardinality. Specifically, |EV(e)| = 2, |EE(e)| = 4, |ET(e)| = 2, |TV(t)| = 3, |TE(t)| =
3 and |TT(t)| = 3.

B. Variable relations. These relations are vertex-based and the cardinality of the set may vary
depending on which vertex is being mapped (VV, VE and VT).

1 The set VV(v) is also known as the link of v.

5

M. Attene JMeshLib

In the design of a data-structure, however, it is useful to extend the concept of constant relation to
the case of manifold triangle meshes with boundary. In fact, although the cardinality of some
image-sets is no longer constant, it can assume a finite number of values. Specifically the
cardinality of the EE may be 2 or 4, the one of the ET may be 1 or 2, and the one of the TT may be
0, 1, 2 or 3. All the others are still properly constant.

3.2 A non-redundant data structure
Clearly, a data-structure coding all the relations depicted in Figure 1 is redundant. Conversely,
when dealing with manifold triangle meshes with boundary, the scheme depicted in Figure 2 meets
all of the requirements discussed above [1].

E

V T

Figure 2: Scheme of relationsused in JMeshLib from which it is possible to derive all of the other (non-stored)
relations in optimal time. The dotted line representing the VE indicates that such a relation is only partially stored.

In Figure 2 the VE is indicated with a dotted line, meaning that such a relation is only partially
stored. From now on, we denote with VE* such a restricted VE. VE*(v) maps v into one of its
incident edges. The complete VE(v) can be computed starting from the VE*(v) by "turning around"
v through successive applications of the coded relations, keeping track of the already traversed
triangles. In particular, the initial VE is initialized as the VE*, then choose one triangle of the
ET(VT*(v)), let it be t, and choose the edge e of TE(t) such that v ∈ EV(e) and e ≠ VE*. Now add e
to the set VE and repeat the same operations by considering e as the new VE*. If v is not on the
boundary, the process terminates when e becomes equal to the original VE*(v). If v is on the
boundary, e may become a boundary edge; In this case, the process continues by considering the
unconsidered triangle of ET(VE*(v)) and turns in the opposite sense. An example of this process is
depicted in the following Figure 3.

v
 v

VE*

v
v

VE*

v
v

VE*

v
v

VE*

v
 v

VE*

v
v

VE*

v
v

VE*

v
v

VE*

Figure 3: Reconstruction of the VE relation starting from the VE*.

Note that this process requires a number of operations that is linearly proportional to the number of
elements of the final VE, therefore it is optimal.

6

M. Attene JMeshLib

All the other relations which are not explicitly stored in the data structure may be derived in optimal
time as follows:
C. VE(v) = construction described above;

D. VV(v) = {w∈EV(e) | e ∈ VE(v) and w ≠ v}

E. VT(v) = {t ∈ ET(e) | e ∈ VE(v)}

F. EE(e) = {f ∈ TE(t) | t ∈ ET(e) and f ≠ e}

G. TV(t) = {v ∈ EV(e) | e ∈ TE(t)}

H. TT(t) = {y ∈ ET(e) | e ∈ TE(t) and y ≠ t}

e

e→ v1

e→ v2

e→ t1 e→ t2 t

t→ e1

t→ e3 t→ e2

t→ v1

t→ v2

t→ v3

Figure 4: Orientation of the neighbors of an edge e and of a triangle t as stored within JmeshLib’s data structure

4. Loading polygon meshes
While loading, the data structure is initialized. JMeshLib data structure has been optimized to
efficiently manage manifold and oriented meshes, possibly with boundary. Most graphic formats
supported by the loader (VRML, OFF, IV, …), however, may represent non-manifold and/or non-
orientable sets of polygons. In this case the loader runs the algorithm described in [2]. If the
resulting manifold surface is not oriented, however, JMeshLib assigns an orientation to one triangle
for each connected component, and propagates the orientation to neighboring triangles; once all of
the triangles have been visited, the mesh is cut along edges having non-consistently oriented
incident triangles. Further operations include the triangulation of non-triangular faces, the removal
of isolated vertices, and the duplication of non-manifold vertices.
All the operations described are performed automatically by the loader, so that the user always
works on manifold and oriented meshes.

7

M. Attene JMeshLib

Bibliography
[1] Bruzzone, E. and De Floriani, L. 1990. Two Data Structures for Constructing

Tetrahedralizations. The Visual Computer, 6, 5, 266-283.
[2] Guéziec, A., Taubin, G., Lazarus, F. and Horn, B. 2001. Cutting and stitching: Converting

sets of polygons to manifold surfaces. IEEE Transactions on Visualization and Computer
Graphics, 7, 2, 136–151.

[3] Lee, A. W. F., Sweldens, W., Schröder, P., Cowsar, L. and Dobkin, D. 1998. MAPS:
Multiresolution adaptive parameterization of surfaces. In Proceedings of ACM SIGGRAPH
‘98, 95-104.

[4] Munkres, J. R. 2000. Topology. Prentice Hall, New Jersey, USA.
[5] De Floriani, L., Morando, F. and Puppo, E. 2003. Representation of Non-manifold Objects

through Decomposition Into Nearly manifold parts. In Proceedings of ACM Solid Modeling
’03, 304-309.

8

